The Classical Existence Theorem of Nonlinear Analytic Differential Equations
نویسنده
چکیده
In particular, (6) implies that the functions/i, • • • , /„ are all regular in the domain (7) a > 0, i wi\ < r, • • • ,| to„| < r. In these notations, the following theorem will be proved: Theorem. In the domain (7), let fx, • ■ • ,fnbe regular functions of the form (1) with uniformly almost periodic coefficient functions defined on (2) having Fourier expansions of the type (3), satisfying (4). Then, if (6) holds, there exists a half-plane a > 1^.0 on which the system of differential equations
منابع مشابه
Nonlinear Fuzzy Volterra Integro-differential Equation of N-th Order: Analytic Solution and Existence and Uniqueness of Solution
This paper focuses on the fuzzy Volterra integro-differential equation of nth order of the second-kind with nonlinear fuzzy kernel and initial values. The derived integral equations are solvable, the solutions of which are unique under certain conditions. The existence and uniqueness of the solutions are investigated in a theorem and an upper boundary is found for solutions. Comparison of the e...
متن کاملExistence of positive solution to a class of boundary value problems of fractional differential equations
This paper is devoted to the study of establishing sufficient conditions for existence and uniqueness of positive solution to a class of non-linear problems of fractional differential equations. The boundary conditions involved Riemann-Liouville fractional order derivative and integral. Further, the non-linear function $f$ contain fractional order derivative which produce extra complexity. Than...
متن کاملExistence of triple positive solutions for boundary value problem of nonlinear fractional differential equations
This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...
متن کاملRandom differential inequalities and comparison principles for nonlinear hybrid random differential equations
In this paper, some basic results concerning strict, nonstrict inequalities, local existence theorem and differential inequalities have been proved for an IVP of first order hybrid random differential equations with the linear perturbation of second type. A comparison theorem is proved and applied to prove the uniqueness of random solution for the considered perturbed random differential eq...
متن کاملExistence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations
In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.
متن کاملAn existence result for n^{th}-order nonlinear fractional differential equations
In this paper, we investigate the existence of solutions of some three-point boundary value problems for n-th order nonlinear fractional differential equations with higher boundary conditions by using a fixed point theorem on cones.
متن کامل